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Abstract 

Though there are advancements in speaker recognition technology, available systems often fail to correctly recognize speakers 

especially in noisy environments. The use of Mel-frequency cepstral coefficients (MFCC) has been improved using 

Convolutional Neural Networks (CNN) yet difficulties in achieving high accuracies still exists. Hybrid algorithms combining 

MFCC and Region-based Convolutional Neural Networks (RCNN) have been found to be promising. In this research features 

from speech signals were extracted for speaker recognition, to denoise the signals, design and develop a DFT-based denoising 

system using spectrum subtraction and to develop a speaker recognition method for the Verbatim Transcription using MFCC. 

The DFT was used to transform the sampled audio signal waveform into a frequency-domain signal. RCNN was used to model 

the characteristics of speakers based on their voice samples, and to classify them into different categories or identities. The 

novelty of the research was that it used MFCC integrated with RCNN and optimized with Host-Cuckoo Optimization (HCO) 

algorithm. HCO algorithm is capable of further weight optimization through the process of generating fit cuckoos for best 

weights. It also captured the temporal dependencies and long-term information. The system was tested and validated on audio 

recordings from different personalities from the National Assembly of Kenya. The results were compared with the actual identity 

of the speakers to confirm accuracy. The performance of the proposed approach was compared with two other existing speaker 

recognition the traditional approaches being MFCC-CNN and Linear Predictive Coefficients (LPC)-CNN. The comparison was 

based the Equal Error Rate (EER), False Rejection Rate (FRR), False Match Rate (FMR), and True Match Rate (TMR). Results 

show that the proposed algorithm outperformed the others in maintaining a lowest EER, FMR, FRR and highest TMR. 
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1. Introduction 

Speaker recognition is the process of identifying a person 

based on their voice characteristics. It has various applications 

in security, forensics, biometrics, and speech transcription [1]. 

However, speaker recognition is a challenging task due to the 

variability and complexity of speech signals, as well as the 

presence of noise and interference that are common in par-

liaments [1, 2]. The national assemblies of African countries 

often have to deal with problems including multilingualism, 

dialectal variation, and low-resource languages [3, 4]. These 

can make speaker recognition methods less effective or even 
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unusable. 

In Kenya, the National Assembly has four official lan-

guages: English, Swahili, Kenyan Sign Language, and Braille 

[5]. Therefore, there is a need for a better and more robust 

speaker recognition method that can handle the diversity and 

complexity of the speech signals in the national assemblies of 

African countries, especially Kenya. Such a system should be 

able to extract features from different languages and dialects, 

denoise speech signals from various sources of interference, 

and perform better than the available approaches that rely on 

simple methods or limited data [1, 6]. Variability and com-

plexity of speeches in the National Assembly of Kenya makes 

it challenging for the plenary proceedings to be accurately 

recorded [7]. 

Despite significant research in speaker recognition systems 

and technologies, current systems still struggle with correctly 

recognizing speaker especially in noisy environments [1, 6]. 

There is still a challenge and a need of recognizing speakers in 

noisy environments. Noting that the Parliament of Kenya and 

the 47 County Assemblies in Kenya and expected to produce 

verbatim record of the plenary proceedings as well as com-

mittees. There is need to achieve a robustness to address 

challenges such as variability of the speech signal due to 

different microphones, distances, orientations, and acoustic 

conditions. The interference of the background noise, such as 

applause, laughter, coughing, and other speakers and the 

overlap of multiple speakers, especially in debates and dis-

cussions need to also be addressed. Factors such as the di-

versity of the speakers, such as gender, age, accent, language, 

and speaking style are challenges that can be handled by a 

robust system. 

The researchers aimed to achieve robustness using 

Mel-frequency cepstral coefficients (MFCC) as the acoustic 

features and region-based convolutional neural networks 

(R-CNN) reinforced with hosted cuckoo optimization (HCO) 

algorithm to classify the features. The novel optimized 

R-CNN combines the advantages of CNNs and recursive 

neural networks (RNNs) to address problem of variable 

lengths of speech inputs by dividing the input into regions and 

applying CNNs to each region. The algorithm then aggregates 

the outputs using RNNs to extract both local and global fea-

tures. It has been found applicable in real-time speaker iden-

tification relevant to parliamentary settings. 

In this research, speaker recognition method for the Verba-

tim Transcription of the Kenyan National Assembly was de-

veloped using advanced techniques for feature extraction, 

denoising, and deep learning. Discrete Fourier Transform 

(DFT) is used to perform spectrum subtraction for noise re-

duction, and Mel-frequency cepstral coefficients (MFCC) are 

extracted from speech signals. A region-based convolutional 

neural network (R-CNN) optimized with hybrid cuckoo op-

timization (HCO) algorithm is used to model and classify the 

speakers based on their voice samples. Performance of the 

proposed system on audio recordings from different person-

alities from the National Assembly of Kenya is evaluated and 

compared with two other existing speaker recognition ap-

proaches: MFCC-CNN and LPC-CNN. 

2. Speaker Recognition 

2.1. Components of Speaker Recognition 

Method 

There are many components involved in the process of 

speaker recognition. They include feature extraction, normali-

zation, selection, transformation, classification and decision [8, 

9]. There are also other aspects that need to be considered, such 

as database design, evaluation metrics, security issues, ethical 

issues, etc. [10]. Feature extraction component of speaker 

recognition method extracted relevant information from the 

speech signal. The features are used to represent the character-

istics of the speaker's voice. The component transforms the raw 

speech signal into a set of features that capture the characteris-

tics such as pitch, timbre, accent, pronunciation, energy, spec-

tral shape, etc. [11]. These features were then used as input to a 

classifier. There were different types of features that were to be 

extracted from speech signals, such as spectral features, 

cepstral features, prosodic features, and phonetic features [8, 

12]. Spectral features are based on the frequency spectrum of 

the speech signal, which reflects the shape of the vocal tract and 

the resonance of the vocal cords. Cepstral features are derived 

from the spectral features by applying a logarithmic transfor-

mation and a discrete cosine transform to reduce the correlation 

between adjacent features and enhances the speaker-specific 

information [13]. Prosodic features are related to the variations 

in pitch, intensity, and duration of speech segments, which 

reflect the speaker's emotion, attitude, and intonation [14]. 

Phonetic features are based on the linguistic content of the 

speech signal, such as the pronunciation of vowels, consonants, 

and phonemes, which can vary depending on the speaker's 

native language, dialect, and accent [15]. 

Convolutional Neural Networks (CNNs) can learn to ex-

tract hierarchical and nonlinear features from the input signal. 

Two most widely used method for feature extraction are linear 

predictive coding (LPC) coefficients and Mel-frequency 

cepstral coefficients (MFCCs) [16, 17]. LPC coefficients can 

be derived from the autocorrelation method, the covariance 

method, or the Burg method, among others [18]. LPC coeffi-

cients represent the spectral envelope of the speech signal, 

which is related to the vocal tract shape and hence to the 

identity of the speaker. MFCCs has a lower dimensionality 

than LPC coefficients, which means that they require less 

computation and memory [19]. However, a lower dimen-

sionality may also result in a loss of information and a deg-

radation of performance. MFCCs are generally more robust 

than LPC coefficients, especially in noisy conditions, because 

they reduce the effects of the high-frequency components that 

are more susceptible to noise [20]. LPC coefficients are more 

sensitive to noise and channel distortion, because it relies on 
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the accurate estimation of the linear prediction coefficients. 

Feature normalization component reduces the variability of 

the features due to factors such as noise, channel distortion, or 

different recording conditions [21]. This can improve the per-

formance of the system by making the features more robust and 

discriminative. Feature normalization techniques can be di-

vided into two categories: short-term and long-term normali-

zation. Short-term normalization operates on a frame-by-frame 

basis, while long-term normalization operates on a segment or 

utterance level. Examples of short-term normalization include 

cepstral mean subtraction (CMS), cepstral mean and variance 

normalization (CMVN), and relative spectral transform analy-

sis (RASTA) filtering [22]. Some examples of long-term nor-

malization are feature warping, histogram equalization, and test 

normalization. CMS is a simple method that subtracts the mean 

of each cepstral coefficient from the corresponding coefficient 

in each frame. CMS can reduce the effect of channel distortion, 

but it cannot cope with non-stationary noise or speaker varia-

bility [23]. CMVN is an extension of CMS that also divides 

each cepstral coefficient by its standard deviation. CMVN can 

reduce the effect of both channel distortion and non-stationary 

noise, but it still cannot handle speaker variability [24]. RASTA 

is a more complex method that applies a band-pass filter to each 

cepstral coefficient along the time axis. According to some 

studies, RASTA is generally superior to CMS and CMVN in 

terms of speaker recognition accuracy, especially in noisy or 

mismatched conditions [25]. However, RASTA may not be 

suitable for real-time applications due to its high computational 

cost. Therefore, the best recommended normalization process 

for speaker recognition depends on the specific scenario and the 

trade-off between accuracy and efficiency [25]. A possible 

solution is to combine RASTA with other techniques, such as 

feature selection or dimensionality reduction, to reduce the 

complexity and redundancy of the normalized features. 

Feature selection component chooses the most relevant 

features for speaker recognition, based on some criteria such 

as information content, redundancy, or computational com-

plexity [26]. The main goals of feature selection are to reduce 

the dimensionality of the feature space, to improve the per-

formance of the recognition system, and to reduce the com-

putational complexity and storage requirements. There are 

different methods for feature selection, such as filter methods, 

wrapper methods, and embedded methods. Filter methods 

evaluate the features independently of the classifier and rank 

them according to some criteria, such as information gain, 

mutual information, or Fisher's ratio. Wrapper methods use 

the classifier as a black box and search for the optimal subset 

of features that maximizes the classification accuracy. Em-

bedded methods integrate the feature selection process into 

the classifier training and select the features that are most 

relevant for the classifier complexity [26]. 

Feature transformation component transforms the features 

into a new space that can better capture the speaker-specific 

information. Feature transformation techniques are often 

applied to extract more robust and discriminative features that 

can capture the characteristics of the speaker. Feature trans-

formation using linear discriminant analysis (LDA) or prin-

cipal component analysis (PCA) can be used to project the 

features onto a lower-dimensional subspace that maximizes 

the inter-speaker variability and minimizes the intra-speaker 

variability [27]. Fast Fourier Transform (FFT) can be used to 

convert a time-domain signal into a frequency-domain rep-

resentation, which can reveal the spectral properties of the 

signal [28]. It can also be used to compute features such as 

Mel-frequency cepstral coefficients (MFCCs). CNNs can be 

used to directly process raw waveform data or spectrogram 

images, and can achieve state-of-the-art performance in 

speaker recognition tasks. 

Classification component classifier compares features with a 

database of known speakers and assigns a label to the unknown 

speaker. There are many methods for classification, such as 

Gaussian mixture models (GMMs), hidden Markov models 

(HMMs), CNNs, SVMs, FFT etc. The choice of the classifier 

depends on factors such as accuracy, speed, scalability, and 

adaptability. CNNs have been shown to achieve the highest 

accuracy in speaker recognition, especially when combined 

with other techniques such as i-vectors and attention mecha-

nisms [1]. CNNs can learn complex and high-level features 

from the speech signals that are discriminative for speaker 

identification. GMMs and HMMs are also widely used meth-

ods that have good accuracy, but they rely on hand-crafted 

features such as MFCCs and require careful tuning of parame-

ters such as the number of mixtures and states [29]. SVMs are 

another popular method that can achieve high accuracy with a 

suitable kernel function and regularization parameter. However, 

SVMs suffer from the curse of dimensionality and may not 

perform well on high-dimensional feature spaces. FFT is the 

fastest method, as it can perform a linear transformation on a 

speech signal in O (N log N) time, where N is the length of the 

signal [30, 31]. CNNs are the slowest methods, as they involve 

multiple layers of nonlinear transformations and require large 

amounts of training data and computational resources. How-

ever, CNNs can benefit from parallelization and optimization 

techniques such as GPU acceleration and batch normalization 

to improve their speed. 

Decision component of speaker recognition method makes 

a final decision based on the output of the classifier. There are 

different ways to make decision, such as thresholding, voting, 

fusion, or rejection. The decision can also be influenced by 

prior knowledge, such as speaker models, enrollment data, or 

background information. 

2.2. Denoising by Spectral Subtraction 

Speech denoising is the process of removing noise from 

speech signals. It can improve the quality and intelligibility of 

speaker recognition methods. Spectrum subtraction assumes 

that the noise spectrum is additive and can be estimated from 

the noisy speech spectrum. It can be performed in different 

domains, such as time, frequency, or cepstral, but the most 
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common one is the frequency domain, where the Fast Fourier 

Transform (FFT) is used to convert the speech signal into a 

sequence of short-time spectra [32]. 

The basic idea of spectrum subtraction is to subtract an es-

timate of the noise spectrum from the noisy speech spectrum, 

and then apply an inverse FFT to obtain the enhanced speech 

signal [33]. However, this simple method can introduce some 

artifacts, such as musical noise and speech distortion, due to 

inaccurate noise estimation or over-subtraction. Spectral floor 

is a method that sets a lower limit for the subtracted spectrum, 

so that any negative value is replaced by a small positive value. 

This prevents the generation of musical noise, which is a 

common artifact of spectral subtraction. However, spectral 

floor may introduce some bias in the enhanced speech spec-

trum, and reduce the signal-to-noise ratio (SNR) improvement. 

Spectral gain function is a method that applies a nonlinear 

function to the subtracted spectrum, so that the negative val-

ues are mapped to zero or near-zero values [34]. This also 

reduces the musical noise, but preserves more of the original 

speech spectrum than spectral floor. However, spectral gain 

function may introduce some distortion in the enhanced 

speech spectrum, and affect the speech quality. Spectral 

smoothing function is a method that applies a low-pass filter 

to the subtracted spectrum, so that the high-frequency varia-

tions caused by noise are smoothed out [35]. 

The most suitable method among these three depends on 

the application and the type of noise. For example, spectral 

floor may be more suitable for low SNR conditions, where 

noise reduction is more important than speech quality. Spec-

tral gain function may be more suitable for medium SNR 

conditions, where both noise reduction and speech quality are 

important. Spectral smoothing function may be more suitable 

for high SNR conditions, where speech quality and intelligi-

bility are more important than noise reduction [36]. 

2.3. Mel-frequency Cepstral Coefficient 

Subtraction 

Mel-frequency cepstral coefficient (MFCC) subtraction is a 

technique for enhancing the speaker recognition performance 

of speech systems in noisy environments [37]. MFCC sub-

traction assumes that the noise spectrum is relatively station-

ary and can be estimated from the silent segments of the 

speech signal. By subtracting the noise spectrum from the 

speech spectrum, the MFCC features of the clean speech can 

be recovered. 

MFCC subtraction can improve the speaker recognition 

accuracy by reducing the mismatch between the training and 

testing conditions. MFCC subtraction can also be combined 

with other noise reduction methods, such as spectral subtrac-

tion, Wiener filtering, or cepstral mean normalization, to 

further enhance the speech quality and speaker recognition 

performance [38, 39]. Pre-emphasis stage entails filtering the 

signal through a high-pass filter to emphasize the higher fre-

quencies. This is followed by framing that breaks down the 

audio samples into small frames of between 20 and 40 milli-

seconds. Windowing is then carried out through consideration 

of the next block in the feature extraction process and inte-

grating all the adjacent frequency lines. FFT is then performed 

to convert time to frequency domain followed by Mel filter 

bank processing. DFT transforms the pitch energies to time 

domain to enable frame analysis [40]. 

2.4. Region-based Convolutional Neural 

Networks (R-CNN) Modeling 

Region-based convolutional neural networks (R-CNNs) are 

a type of deep learning model that combines the merits of 

convolutional neural networks (CNN) with recursive neural 

networks (RNN) [41, 42]. CNN can capture complex patterns 

and features from high-dimensional speech signals. In speaker 

recognition methods, CNNs can be used to model the char-

acteristics of speakers based on their voice samples, and to 

classify them into different categories or identities [42]. One 

of the challenges of speaker recognition is to deal with the 

variability and noise in speech signals, which can affect the 

performance of the system. To address this issue, CNNs can 

use multiple layers of filters and pooling operations to extract 

robust and discriminative features from the raw speech data 

[43]. Moreover, CNNs can use techniques such as batch 

normalization, dropout, and regularization to prevent overfit-

ting and improve generalization. 

RNNs can process sequential data, such as speech, by 

maintaining a hidden state that encodes the previous inputs. 

They can learn long-term dependencies and capture the 

temporal dynamics of speech signals and can be used to ex-

tract features from speech frames or segments, and then feed 

them to a classifier, such as a softmax layer or a support vector 

machine (SVM) [44]. R-CNNs can perform object detection 

and segmentation by applying CNNs to region proposals 

generated by a selective search algorithm. They can learn 

features that are invariant to scale, rotation, and translation, 

and can handle complex backgrounds and occlusions [45]. 

One way to use R-CNNs for speaker recognition is to in-

tegrate them with the i-vector framework. It is a popular 

method for extracting low-dimensional speaker embeddings 

from high-dimensional acoustic features. The i-vector 

framework consists of two steps: first, a universal background 

model (UBM) is trained on a large set of speakers to capture 

the general variability of speech; second, a total variability 

matrix is estimated to model the speaker- and chan-

nel-dependent variability of speech [46]. Hourri et al. pro-

posed ConvVector framework extracts speaker characteristics 

by constructing CNN filters linked to the speaker. It achieves 

an equal error rate (EER) of 1.05% on a gender-dependent 

corpus under different noise conditions [47]. The framework 

consists of two main components: a ConvVector generator 

and a ConvVector classifier. The ConvVector generator takes 

a speaker's utterance as input and produces a set of filters that 

capture the speaker's acoustic features. The ConvVector clas-
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sifier then applies these filters to another utterance and com-

putes a similarity score between the two utterances based on 

the filter responses. The similarity score reflects how likely 

the two utterances belong to the same speaker [47]. Conv2D 

can also handle noise and channel variability well, but it re-

quires more computational resources than ConvVector [2]. 

3. Research Methodology 

Figure 1 illustrates the proposed method for speaker 

recognition using MFCC and region-based convolutional 

neural networks optimized with HCO algorithm. Speech 

signals were input into the system and were preprocessed by 

adding known white Gaussian noise [23, 32]. The sig-

nal-to-noise ratio was adjusted between 1 and 20dB, followed 

by denoising through spectrum subtraction. The denoised 

signal underwent MFCC feature extraction. These features 

were then utilized to create speaker models, which were pre-

served in a database. Subsequently, speech signal features 

were compared with the database entries to ascertain speaker 

identity. The system then determined the speaker's identity as 

either known or unknown, which constituted the system's 

output. 

 
Figure 1. Proposed Speaker Recognition method. 

3.1. Denoising by Spectrum Subtraction 

A time smoothing window was utilized on a noisy signal to 

mitigate high-frequency noise and utilize the correlation be-

tween consecutive samples. Subsequently, a noise reduction 

filter was applied to the smoothed signal to approximate the 

desired speech signal. Additionally, a Wiener filter was em-

ployed to reduce the mean square error between the estimated 

signal and the actual one. [38]. Next, Kalman filter was used 

on the same noisy signals to estimate the state of a dynamic 

system from a series of noisy measurements [48]. 

The SNR of the estimated speech signal was calculated as 

shown in Equation 1. 

𝑆𝑁𝑅 = 10𝑙𝑜𝑔10 (
∑ 𝑠2(𝑛)𝑁

𝑛=1

∑ (𝑠*𝑛+−𝑠̂(𝑛))
2𝑁

𝑛=1

)        (1) 

Where; 

s was the true speech signal; 

𝑠̂ was the estimated speech signal; and 

N was the number of samples. 

3.2. Feature Extraction from Speech Signals 

Feature extraction was carried out using MFCC. 

Pre-emphasis filter was applied to boost the high frequencies 

and any DC offset was removed from the signal. Equation 2 

illustrates how the filter was applied to improve the signal 

power. 

𝑆𝑜𝑢𝑡(𝑛) = 𝑆𝑖𝑛(𝑛) − 𝛼𝑆𝑖𝑛(𝑛 − 1)     (2) 

Where, 

𝑆𝑜𝑢𝑡(𝑛) was the output speech signal; 

𝑆𝑖𝑛(𝑛) was the input speech signal; 

𝛼 was the filtering constant ranging between 0.9 and 1; 

Speech was framed into 25 ms overlapping segments using 
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Q samples, with P=100 and Q=256 creating common overlaps; 

Hamming window, 𝑊(𝑛), applied. 

𝑊(𝑛) = 𝑊0 (𝑛 −
𝑁−1

2
) , 𝑓𝑜𝑟 0 ≤ 𝑛 ≤ 𝑁 − 1      (3) 

Where, 

𝑁 was number of samples per bin; 

𝑊0 was the window coefficient applied to samples; 

The Output speech signal, 𝑆𝑜𝑢𝑡(𝑛), was defined in terms of 

input speech signal, 𝑆𝑖𝑛(𝑛), and hamming window, 𝑊(𝑛), as 

shown in Equation 4. 

𝑆𝑜𝑢𝑡(𝑛) = 𝑆𝑖𝑛(𝑛)𝑊(𝑛)             (4) 

Hamming window was used to extract pitch coefficients to 

help reduce the signal value towards zero at the window 

boundary and to avoid interruption. Equation 5 illustrates the 

impulse response of the Hamming window. 

𝑊(𝑛) = 0.54 − 0.46 cos (
2𝜋𝑛

𝑁−1
) , 0 ≤ 𝑛 ≤ 𝑁 − 1     (5) 

The sample in the time domain, 𝑕(𝑡)𝑥(𝑡), was converted 

into the frequency domain 𝑌(𝑓) for each frame using Equa-

tion 6. 

𝑌(𝑓) = 𝐹𝐹𝑇(𝑕(𝑡)𝑥(𝑡)) = 𝐻(𝑓)𝑋(𝑓)       (6) 

Where, 

𝐻(𝑓)𝑋(𝑓) is the FFT of 𝑕(𝑡)𝑥(𝑡) 

The Discrete Fourier Translate (DFT) of each frame was 

computed to obtain the magnitude spectrum [49]. A filter bank 

of triangular filters spaced according to the Mel-scale was 

applied. The Mel-scale was defined in Equation 7. 

𝑚𝑓 =  2595 𝑙𝑜𝑔10 (1 +
𝑓

700
)           (7) 

Where, 

mf was the Mel-frequency and 

f was the linear frequency in Hz. 

Logarithmic compression and DCT applied to filter bank 

outputs yielded decorrelated MFCC vectors, reducing re-

dundancy and mimicking auditory perception as shown in 

Equation 8. 

𝐶𝑛 = ∑ (log 𝑆𝑘)𝑘
𝑘=1 cos (

𝑛𝜋

𝑘
(𝑘 −

1

2
))       (8) 

Where, 

𝑛 = 1,2, ⋯ , 𝑘; and 

𝑆𝑘is the output of the last step 

3.3. MFCC-R-CNN Based Speaker Recognition 

The system identified speakers by modeling their voices 

using MFCC-based speech features and an R-CNN optimized 

by the HCO algorithm. The R-CNN processed spectrograms 

of speech signals, pinpointing phonetic elements to extract 

features. This MFCC-R-CNN fusion aimed to create a robust 

speaker model, capturing spectral and temporal aspects of 

speech. However, R-CNN training was resource-intensive and 

may overfit. The HCO algorithm optimized parameters of 

R-CNN to mitigate this. R-CNN also used max-pooling to 

learn scale, rotation, and translation invariant features, re-

ducing overfitting and computational demands. A pooling 

layer handled complex scenarios, focusing on pertinent image 

areas. Speaker embedding layer mapped features to vectors, 

encapsulating speaker identity. The speaker embedding layer, 

trained via triplet loss, optimized feature distances for accu-

rate speaker recognition. It was enhanced with an attention 

mechanism that prioritized relevant features. To combat 

overfitting and bolster generalization, techniques like batch 

normalization, dropout, and regularization were employed. 

[50]. The dropout randomly dropped out some units in each 

layer during training to reduce the co-adaptation of features 

and increase the diversity of the network [51]. Batch nor-

malization ensured consistent input distribution, dropout 

prevented feature co-dependence, and regularization con-

trolled weight complexity, aiding in model generalization. 

The model adeptly handled sequential data, encoding past 

inputs into a hidden state. It leveraged RNN, CNN, and LSTM 

networks for robust feature extraction from speech, culmi-

nating in a softmax layer for final classification or regression. 

For R-CNN, the output vector, y, was expressed in Equation 

9. 

𝑦 = 𝑓(𝑊𝑇𝑋(𝑛) + 𝑏)           (9) 

Where, 

𝑓 was the activation function; 

𝑊𝑇was the transform of the weight matrix; 

𝑋(𝑛) was an input vector, and 

𝑏 was a bias vector. 

HCO algorithm was used optimize the R-CNN. HCO con-

sists of three operators: levy flight, egg laying, and host bird 

selection [42]. Levy flight is a random walk process that fol-

lows a power-law distribution. It was used to simulate the 

movement of cuckoos in search of host nests. The levy flight 

was expressed in Equation 10. 

𝑋𝑖,𝑡+1 = 𝑋𝑖,𝑡 + 𝛼𝐿(𝜆)            (10) 

Where, 

𝑋𝑖,𝑡was the position of the i
th

 cuckoo at iteration t, 

𝛼 was a scaling factor, and 

𝐿(𝜆) was a levy distribution with exponent lambda. 

Egg laying is a method for creating novel solutions by al-

tering existing ones, akin to cuckoos secretly nesting in host 

nests. [52]. The egg laying was expressed as shown in Equa-

tion 11. 
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𝑦𝑖  =  𝑥𝑖  +  𝛽(𝑥𝑗  −  𝑥𝑘)          (11) 

Where, 

𝑦𝑖  was the new solution (egg) generated by the i
th

 cuckoo; 

𝑥𝑗  and 𝑥𝑘  were randomly selected solutions from the 

current population, and 

𝛽 was a mutation factor. 

Host bird selection involved choosing superior solutions 

from existing and new populations, predicated on host birds 

identifying and removing certain cuckoo eggs. The host bird 

selection was expressed as illustrated in Equation 12. 

𝑖𝑓 𝑓(𝑦𝑖) <  𝑓(𝑥𝑖)𝑡𝑕𝑒𝑛 𝑥𝑖  =  𝑦𝑖          (12) 

Where, 

𝑓(𝑦𝑖) and 𝑓(𝑥𝑖) were the objective functions to be mini-

mized, and 

𝑥𝑖 and 𝑦𝑖  were the old and new solutions, respectively. 

With HCO algorithm, the new solution, 𝑋𝑖,𝑡+1, for the i
th

 

R-CNN at iteration t+1 was expressed as Equation 13. 

𝑋𝑖,𝑡+1 = 𝑋𝑖,𝑡 + 𝐿(𝜆)(𝑋𝑖,𝑡 − 𝑋𝑗,𝑡)        (13) 

Where, 

𝑋𝑖,𝑡 is the current solution for the i
th

 R-CNN at iteration t; 

𝐿(𝜆) is a levy flight with scale parameter; and 

𝑋𝑗,𝑡 was a randomly chosen solution from the population, j, 

at iteration t. 

4. Results and Discussions 

Results in Figure 2 illustrate original, noisy and denoised 

audios. Periods of silence were less with original signal with 

background noise compared to original signal without back-

ground noise. When Gaussian noise of SNR=10 was added, 

the noisy signal is shown in top left graph of Figure 2. The 

denoised signal had a lower amplitude compared to noisy 

signal. 

 
Figure 2. Original, noisy and denoised audio signals. 

Figure 3 illustrates magnitude and phase response versus 

normalized audio frequency. The filter phase rises exponen-

tially from -0.1 at normalized frequency of 0 to maximum of 

1.25 at normalized frequency of 1. The results suggest that the 

filter introduces more delay as the frequency increases, which 

could be indicative of a higher-order all-pass filter character-

istic. 

The magnitude response of the filter revealed a pronounced 

peak. The corresponding graph depicted a pattern where the 

magnitude lessened with rising frequency, aligning with a typ-

ical behavior of low pass. This suggested a reduction in the 

audio intensity at elevated frequencies. Conversely, the phase 

response graph illustrated the phase alteration in relation to 

frequency. An increasing phase shift with frequency implied a 

progressive delay in the signal correlating with frequency. The 

data indicated that the audio signal underwent processing that 

impacted both its amplitude and phase. Starting at -27dB at a 

normalized frequency of 0, the signal abruptly climbed to a 

peak of 5dB at a normalized frequency of 0.1, then plummeted 

back to -27dB at a normalized frequency of 1. This behavior 

typifies a band-pass filter, particularly one with a narrow 

passband centered at the normalized frequency of 0.1. The 

sharp ascent to the apex implied a significant resonance at that 

frequency, while the decline thereafter reflected the filter's rate 

of attenuation for frequencies falling outside the passband. 
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Figure 3. Magnitude and Phase response against normalized frequency. 

Figure 4 illustrates power spectrum of original and noisy 

signals. The power for original signal ranged between -30dB 

and -140dB. For noisy signal the power ranged between 

-30dB and -70dB. The original signal has a power range that 

extends from -30dB to -140dB, which suggests a wide dy-

namic range and possibly a high degree of variation within the 

signal itself. 

 
Figure 4. Power spectra of original and noisy signals. 

This indicated a complex signal characterized by multiple 

frequency components or a signal with a high signal-to-noise 

ratio. Conversely, the noisy signal presented a much narrower 

power spectrum, ranging from -30dB to -70dB. This sug-

gested that the noise within the signal was quite substantial, 

possibly dominating the original signal at certain frequencies. 

The power levels' convergence at -30dB for both signals 

might have implied that the noise floor was at this level, with 

any signal components beneath this threshold likely obscured 

by noise. 

The denoising scheme used in the proposed algorithm was 

effective in that despite the Gaussian noise SNR increasing 

from 1 to 20dB, the denoised signals had greater SNR com-

pared to input signals. Generally, SNR of output signal in-

creased with increase of SNR for input signal. Figure 5 illus-

trates variations of SNR for output (denoised) signals com-

pared to that of input signals. 

 
Figure 5. Input against Output Signal to Noise Ratio. 

Figure 6 illustrates in amplitude versus time as well as 

power versus frequency of pre-emphasized signal (the de-

scription is poorly done. What is the essence of Figure 6 in 

this paper? 
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Figure 6. Pre-emphasized signal in frequency and time domains. 

The windowed frames in time and frequency domain are 

shown Figure 7. The highest amplitude was 0.2 and highest 

power was -40dB and lowest -200dB. Conversely, the lowest 

power level was significantly weaker at -200dB, suggesting 

that there were parts of the signal that had very little energy. 

This wide range between the highest and lowest power levels 

implied that the signal had a high dynamic range or that there 

were periods of low activity interspersed with peaks of higher 

intensity. 

The dynamic range was useful to understand the efficiency 

of processing audio signal and to detect any potential issues 

with signal integrity. The measurements could help in as-

sessing the loudness and clarity of the recorded sound. 

 
Figure 7. Windowed frames in time and frequency domains. 

Figure 8 illustrates Mel frequency filter bank response for 

the four audio signals recorded in the National Assembly of 

Kenya. At low frequencies, the response intensity was high. 

Increase in frequency of the response reduced intensity 

gradually. The high response intensity at low frequencies 

aligns with the greater sensitivity of human ear to lower fre-

quencies. As the frequency increased, the intensity diminished, 

which is typical due to the logarithmic nature of the Mel scale 

that mimics response of the human auditory system. The 

spacing of the lines in the filter bank response reflected the 

property Mel scale of having a higher resolution at lower 

frequencies and a lower resolution at higher frequencies. The 

observed pattern in the filter bank response was indicative of 

the role of filter bank in emphasizing the formant structure of 

speech important for distinguishing phonetic elements and 

understanding spoken language. 
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Figure 8. Mel filter bank response. 

The Mel filter bank illustrated in Figure 9 shows while the 

filter index increased from 1 to 20 with increase in frequency 

index, the spectrum reduced from 1 to 0. The gradual decline 

of the spectrum from 1 to 0 across the filters reflects the log-

arithmic nature of the Mel scale, which is more aligned with 

human auditory perception than the linear frequency scales. 

 
Figure 9. Mel filter bank. 

Results in Figure 10 illustrates MFCCs for four audio sig-

nals with respect to time. MFCC spectral range of Audio 1 

was mainly between -3 and 1, for Audio 2 between -1 and 2, 

Audio 3 were mainly between -4 and 1 and Audio 4 were 

mainly between -1 and 3. Audio 1 and Audio 3 had a lower 

range, potentially indicating a deeper voice quality, while 

Audio 2 and Audio 4 exhibited a higher ranges corresponding 

to a lighter or more variable voice. 

 
Figure 10. MFCC of four audio signals. 

The histograms in Figure 11 illustrate the MFCCs for four 

audio signals with respect to coefficient values. All the four 

audio signals had mean of probability density below zero 

coefficient value. This means on average, the energy in the 

frequency bands represented by the coefficients was less than 

the logarithm of the overall energy. This also means the voices 

had less energy in the frequency bands that were crucial for 

distinguishing between different speakers. The histograms 

show that audio signal from Speaker 2 had mean coefficient 

value of -0.364421148 and a mean probability density value 
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of 1.052896054 which was the highest probability density 

among the four speakers. This suggests that the audio char-

acteristics of Speaker 2 are more consistently represented 

across the sample, potentially making the speech pattern the 

most distinct and recognizable. On the other hand, audio 

signal of Speaker 3 had the highest mean coefficient value of 

-0.259147726 but the lowest mean probability density value 

of 0.81563408. This was the least consistent speech pattern, 

which could pose challenges for recognition. Speakers 1 and 4 

have almost similar mean coefficient values, but Speaker 4 

has a slightly higher probability density, indicating a slightly 

more consistent pattern than Speaker 1. These results suggest 

that while all the four speakers could be differentiated based 

on their MFCCs, Speaker 2 stood out as having the most 

distinct and consistent speech pattern, which was advanta-

geous for the proposed speaker recognition system. 

Results in Figure 12 illustrate variations of performance in-

dicators for 50 audio samples tested with the three algorithms 

MFCC-RCNN-HCO, LPC-CNN and MFCC-CNN. The per-

formance indicators were Equal Error Rate (EER), False Match 

Rate (FMR), False Rejection Rate (FRR) and True Match Rate 

(TMR). The proposed algorithm demonstrates a robust per-

formance across indicators. The results show that for the graph 

of variation between FRR against FMR, the proposed algo-

rithm had the lowest FRR, followed by LPC-CNN and lastly, 

MFCC-CNN. As FRR decreased, there was increase in FMR 

for each of the algorithms. The proposed algorithm maintains 

the lowest FRR which is essential identifying speakers. This is 

particularly important in the context of the National Assembly, 

where incorrect rejection of a speaker could lead to incorrect 

Hansard transcription of speech. Conversely, the increase in 

FMR as FRR decreased was an expected trade-off in the 

speaker recognition system, reflecting a balance between cor-

rect identification and convenience in transcription. Relation-

ship between TMR and EER show that as EER varied, the 

proposed algorithm had the highest TMR of all the three fol-

lowed by LPC-CNN and then MFCC-CNN. TMR of all the 

algorithms increased with increase in EER. While the proposed 

algorithm achieves the lowest EER at lower FMR levels, its 

performance dips as FMR exceeds 40%. The proposed algo-

rithm's ability to keep FMR increases at bay, up to a 40% 

threshold, was indicative of its sophisticated design, which 

incorporated advanced features extraction and classification 

techniques inherent to MFCC-RCNN-HCO. This could imply 

that the algorithm is highly accurate under typical conditions, 

though its reliability is low but reasonable in scenarios with 

higher noise levels or poor audio quality, which are plausible in 

lively parliamentary settings. The relationship between TMR 

and EER further underscores the algorithm's initial accuracy, 

but also highlights a potential area for improvement in main-

taining performance consistency across varying error rates. The 

increase in TMR with EER suggests that the algorithm is more 

lenient at higher error rates, which could be beneficial in some 

scenarios but might also introduce vulnerabilities. Graph of the 

relationship between TMR and FMR illustrates that TMR for 

the proposed algorithm was the highest across all values of 

FMR. There was increase in TMR as FMR increased. Superior 

TMR of the proposed algorithm suggests that it had the highest 

probability of correctly identifying speakers from audio signals. 

 
Figure 11. Histograms of the MFCCs for the four audios. 
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Figure 12. Performance indicators of the algorithms. 

5. Conclusions 

The proposed algorithm outperformed the others in main-

taining a lowest EER, FMR, FRR and highest TMR. The 

algorithm consistently had the highest TMR, even as FMR 

rose, indicating a robust ability to accurately identify speak-

ers from audio signals. A low FRR ensures reliable Hansard 

transcriptions, while the trade-off with increasing FMR is a 

common aspect of such systems. The algorithm excels in 

achieving a low EER, indicating high accuracy. The pro-

posed algorithm was also robust under typical parliamentary 

conditions that have high noise levels. 
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